
ptg7794906

1
Web Page Building

Blocks

In This Chapter
	 3

Semantic HTML: Markup with Meaning 6

Markup: Elements, Attributes, and Values 13

A Web Page’s Text Content 16

Links, Images, and Other Non-Text
Content 17

File Names 19

URLs 20

Key Takeaways 24

While Web pages have become increasingly
complex, their underlying structure remains
remarkably simple. The first thing you
should know is that it’s impossible to create
a Web page without HTML. As you will learn,
HTML houses your content and describes
its meaning. In turn, Web browsers render
your HTML-encased content for users.

A Web page is primarily made up of three
components:

n	 Text content: The bare text that
appears on the page to inform visitors
about your business, family vacation,
products, or whatever the focus of your
page may be.

n	 References to other files: These load
items such as images, audio, video,
and SVG files, and they link to other
HTML pages and assets, as well as to
style sheets (which control your page’s
layout) and JavaScript files (which add
behavior to your page).

n	 Markup: The HTML elements that
describe your text content and make
the references work. (The m in HTML
stands for markup.)

ptg7794906

2 Chapter 1

It’s important to note that each of these
components in a Web page is made up
exclusively of text. This means that pages
are saved in text-only format and can be
viewed on practically any browser on any
platform, whether desktop, mobile, tablet,
or otherwise. It guarantees the universal-
ity of the Web. A page may look differ-
ent when viewed on one device versus
another, but that’s OK. The important thing
as a first step is to make content acces-
sible to all users, and HTML affords that.

In addition to the three components that a
Web page is primarily made up of, a page
also includes HTML that provides informa-
tion about the page itself, most of which
your users don’t see explicitly and that is
primarily intended for browsers and search
engines. This can include information

about the content’s primary language
(English, French, and so on), character
encoding (typically UTF-8), and more.

This chapter will walk you through a basic
HTML page, discuss some best practices,
and explain each of the three important
components.

Note: As mentioned in the introduction,
I use HTML to refer to the language in
general. For those instances in which I’m
highlighting special characteristics unique
to a version of the language, I will use the
individual name. For example, “HTML5
introduces several new elements and
redefines or eliminates others that previ-
ously existed in HTML 4 and XHTML 1.0.”
For more details, please consult “How This
Book Works” in the introduction.

ptg7794906

Web Page Building Blocks 3

A Basic HTML Page
Let’s take a look at a basic HTML page to
give you context for what’s to follow in this
chapter and beyond. Figure A illustrates
how a desktop browser typically renders
the HTML code in B. You’ll learn some of
the basics about the code B, but don’t
worry if you don’t understand it all right
now. This is just to give you a taste of
HTML. You have the rest of the book to
learn more about it.

You can probably guess some of what’s
going on in the code, especially in the
body section. First let’s look at the part
before the body.

A A typical default rendering of the page.
Although this shows the page in Firefox, the page
displays similarly in other browsers.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>Blue Flax (Linum lewisii)</title>
</head>
<body>
 <article>
 <h1>The Ephemeral Blue Flax</h1>

 <p>I am continually amazed at the beautiful, delicate <a href="http://

➝ en.wikipedia.org/wiki/Linum_lewisii" rel="external" title="Learn more about Blue
➝ Flax">Blue Flax that somehow took hold in my garden. They are awash in color every
➝ morning, yet not a single flower remains by the afternoon. They are the very definition
➝ of ephemeral.</p>

 </article>
</body>
</html>

B Here is the code for a basic HTML page. I've highlighted the HTML portions so you can distinguish
them from the page's text content. As demonstrated in A, the HTML surrounding the text content doesn't
appear when you view the page in a browser. But, as you will learn, the markup is essential because it
describes the content's meaning. Note, too, that each line happens to be separated with a carriage return.
This isn't mandatory and does not impact the page's rendering.

ptg7794906

4 Chapter 1

Everything above the <body> start tag is
the instructional information for browsers
and search engines mentioned earlier C.
Each page begins with the DOCTYPE dec-
laration, which tells the browser the HTML
version of the page.

You should always use HTML5’s DOCTYPE,
which is <!DOCTYPE html>. The case of
the text doesn’t matter, but it’s more com-
mon to use DOCTYPE in all uppercase.
Regardless, always include the DOCTYPE
in your pages. (See the sidebar “HTML5’s
Improved DOCTYPE” in Chapter 3 for more
information.)

The bits that start at <!DOCTYPE html> and
continue through </head> are invisible to
users with one exception: the text between
<title> and </title>—Blue Flax (Linum
lewisii)—appears as the title at the very top
of the browser window and on a browser
tab B. Additionally, it’s typically the default
name of a browser bookmark or favorite
and is valuable information for search
engines. Chapter 3 explains what the other
parts of the top segment of a page do.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>The Ephemeral Blue Flax

➝ (Linum lewisii)</title>
</head>

C The title element text is the only part of
the top area of an HTML document that the user
sees. The rest is information about the page for
browsers and search engines.

ptg7794906

Web Page Building Blocks 5

Meanwhile, your page’s content—that is,
what is visible to users—goes between
<body> and </body>. Finally, the </html>
end tag signals the end of the page D.

The code’s indentation has absolutely
no bearing on whether the code is valid
HTML. It also doesn’t affect how the con-
tent displays in the browser (the pre ele-
ment, which you’ll learn about in Chapter 4,
is the one exception). However, it’s custom-
ary to indent code that’s nested in a parent
element to make it easier to glean the
hierarchy of elements as you read through
the code. You’ll learn more about parents
and children later in this chapter. You’ll also
learn in greater detail about the default
browser rendering.

First, let’s discuss what it means to write
semantic HTML and why it is a cornerstone
of an effective Web site.

<!DOCTYPE html>
<html lang="en">
. . . [document head] . . .
<body>
 <article>
 <h1>The Ephemeral Blue Flax</h1>

 <img src="blueflax.jpg" width="300"
➝ height="175" alt="Blue Flax (Linum
➝ lewisii)" />

 <p>I am continually amazed

➝ at the beautiful, delicate
➝ <a href="http://en.wikipedia.org/
➝ wiki/Linum_lewisii" rel="external"
➝ title="Learn more about Blue Flax">
➝ Blue Flax that somehow took
➝ hold in my garden. They are awash
➝ in color every morning, yet not a
➝ single flower remains by the
➝ afternoon. They are the very
➝ definition of ephemeral.</p>

 </article>
</body>
</html>

D A page’s content exists between the start and
end tags of the body element. The document ends
at </html>.

ptg7794906

6 Chapter 1

Semantic HTML:
Markup with Meaning
HTML is a clever system of including
information about the content in a text
document. This information, called markup,
describes the meaning of the content, that
is, the semantics. You’ve already seen a
few examples in our basic HTML page,
such as the p element that marks up para-
graph content.

HTML does not define how the content
should appear in a browser; that’s the role
of CSS (Cascading Style Sheets). HTML5
stresses this distinction more than any
prior version of HTML. It’s at the core of the
language.

You might be wondering why, if that’s the
case, some text in the basic HTML page A
looks larger than other text, or is bold or
italicized B.

Great question. The reason is that every
Web browser has a built-in CSS file (a style
sheet) that dictates how each HTML ele-
ment displays by default, unless you create
your own that overwrites it. The default
presentation varies slightly from browser to
browser, but on the whole it is fairly consis-
tent. More importantly, the content’s under-
lying structure and meaning as defined by
your HTML remain the same.

...
<body>
 <article>
 <h1>The Ephemeral Blue Flax</h1>

 <img src="blueflax.jpg" width="300"
➝ height="175" alt="Blue Flax (Linum
➝ lewisii)" />

 <p>I am continually amazed

➝ at the beautiful, delicate
➝ <a href="http://en.wikipedia.org/
➝ wiki/Linum_lewisii" rel="external"
➝ title="Learn more about Blue Flax">
➝ Blue Flax that somehow took
➝ hold in my garden. They are awash
➝ in color every morning, yet not a
➝ single flower remains by the
➝ afternoon. They are the very
➝ definition of ephemeral.</p>

 <p><small>© Blue Flax Society.
➝ </small></p>

 </article>
</body>
</html>

A The content of our basic page plus a second
paragraph added at the end. The HTML elements
don’t dictate how the content should appear, just
what they mean. Instead, each browser’s built-in
style sheet dictates how the content displays by
default B.

ptg7794906

Web Page Building Blocks 7

Block-level, Inline, and HTML5
As you can see, some HTML elements (for
example, the article, h1, and p) display
on their own line like a paragraph does in
a book, while others (for example, the a
and em) render in the same line as other
content B. Again, this is a function of the
browser’s default style rules, not the HTML
elements themselves. Allow me to elabo-
rate. Before HTML5, most elements were
categorized as either block-level (the ones
that displayed on their own line) or inline
(the ones that displayed within a line of
text). HTML5 does away with these terms
because they associate elements with
presentation, which you’ve learned isn’t
HTML’s role.

Instead, generally speaking, elements that
had previously been dubbed inline are cat-
egorized in HTML5 as phrasing content—
that is, elements and their contained text
that primarily appear within a paragraph.
(Chapter 4 focuses almost exclusively
on phrasing content. See the full list at
http://dev.w3.org/html5/spec-author-view/
content-models.html#phrasing-content-0.)

The old block-level elements also now fall
into new HTML5 categories that focus on
their semantics. Many of these elements
account for the main structural blocks and
headings of your content (dig into Chapter
3 to learn more about sectioning content
and heading content elements).

With all that said, browsers haven’t
changed the default display rules for these
elements, nor should they. After all, you
wouldn't want, say, the two paragraphs (the
p elements) running into each other, or the
em text (“amazed”) to break the sentence
by appearing on its own line (em is the ele-
ment you use for adding emphasis).

B A browser’s default style sheet renders
headings (h1–h6 elements) differently than normal
text, italicizes em text, and colors and underlines
links. Additionally, some elements begin on their
own line (h1 and p, for example), and others
display within surrounding content (like a and
em). This example includes a second paragraph
(the copyright notice) to make it clear that each
paragraph occupies its own line. It’s simple to
overwrite any or all of these presentation rules
with your own style sheets.

http://dev.w3.org/html5/spec-author-view/content-models.html#phrasing-content-0
http://dev.w3.org/html5/spec-author-view/content-models.html#phrasing-content-0

ptg7794906

8 Chapter 1

So usually headings, paragraphs, and
structural elements like article display
on their own line, and phrasing content
displays on the same line as surround-
ing content. And even though HTML5
no longer uses the terms block-level and
inline, it helps to know what they mean.
It’s common for tutorials to use them since
they were entrenched in HTML vernacular
before HTML5. I might use them occasion-
ally in the book to quickly convey whether
an element occupies its own line or shares
a line by default.

We’ll cover CSS in detail in later chapters,
but for now know that a style sheet, like
an HTML page, is just text, so you can
create one with the same text editor as
your HTML.

HTML5’s Focus on Semantics
HTML5 emphasizes HTML semantics, leav-
ing all visual styling to CSS. That wasn’t
always the case with earlier versions of
HTML.

A proper means to style pages didn’t exist
in the Web’s nascent years; HTML was
already a few years old by the time CSS1
was formally introduced in December
of 1996. To fill that gap in the meantime,
HTML included a handful of presentational
elements whose purpose was to allow
basic styling of text, such as making it bold,
italicized, or a different size than surround-
ing text.

Those elements served their purpose
for the time, but they rightfully fell out of
favor as best practices evolved for Web

development. Central to that thinking
was—and still very much is—the notion that
HTML is for describing the content’s mean-
ing only, not its display.

The presentational HTML elements broke
this best practice. As such, HTML 4 dep-
recated their use, recommending authors
use CSS to style text and other page ele-
ments instead.

HTML5 goes further; it eliminates some
presentational elements and redefines
others so they carry only semantic value
instead of dictating presentation.

The small element is one such example.
Initially, it was intended to make text
smaller than regular text. However, in
HTML5 small represents fine print, such
as a legal disclaimer. You can use CSS
to make it the largest text on the page if
you’d like, but that won’t change the mean-
ing of your small content.

Meanwhile, small’s old counterpart, the
big element, doesn’t exist in HTML5. There
are other examples, too, which you’ll learn
about as you progress through the book.

HTML5 also defines new elements, such
as header, footer, nav, article, section,
and many more that enrich the semantics
of your content. You’ll learn about those
later as well.

However, whether you use an HTML ele-
ment that’s existed since the dawn of the
language or one that’s new in HTML5,
your goal should be the same: Choose the
elements that best describe the meaning
of your content without regard for their
presentation.

ptg7794906

Web Page Building Blocks 9

The Semantics of Our
Basic HTML Page
Now that you know HTML’s role, let’s look a
little deeper at the thought process behind
marking up sample content. As you’ll see,
there’s no magic to writing semantic HTML.
It’s mostly common sense once you’re
familiar with the elements at your disposal.
Let’s revisit the body of our basic page
for a taste of some of the most frequently
used HTML elements C.

All the content is contained in an article
element C. In short, article defines a
distinct piece of content. The article ele-
ment is the appropriate choice to surround
the content for our basic page, but not nec-
essarily for every page you’ll write. You’ll
learn more about when to use article in
Chapter 3.

Next is a heading D. HTML provides you
six heading levels, h1–h6, with h1 being the
most important. An h2 is a subheading of
an h1, an h3 is a subheading of an h2, and
so on, just like when you type a document
with various headings in a word processor.

Every HTML page should have an h1 (or
more, depending on your content), so
marking up our heading with h1 was the
obvious choice. The heading elements h1–
h6 are covered more in Chapter 3.

Next, you have an image E. The img ele-
ment is the primary choice for displaying
an image, so again, there was no debate
about which element was appropriate. The
alt attribute provides text that displays
if the image doesn’t load or if the page is
viewed in a text-only browser. You’ll learn
more about images in Chapter 5.

<body>
 <article>
 <h1>The Ephemeral Blue Flax</h1>

 <img src="blueflax.jpg" width="300"
➝ height="175" alt="Blue Flax (Linum
➝ lewisii)" />

 <p>I am continually amazed

➝ at the beautiful, delicate
➝ <a href="http://en.wikipedia.org/
➝ wiki/Linum_lewisii" rel="external"
➝ title="Learn more about Blue Flax">
➝ Blue Flax that somehow took
➝ hold in my garden. They are awash
➝ in color every morning, yet
➝ not a single flower remains by
➝ the afternoon. They are the very
➝ definition of ephemeral.</p>

 </article>
</body>

<h1>The Ephemeral Blue Flax</h1>

<img src="blueflax.jpg" width="300"
➝ height="175" alt="Blue Flax (Linum lewisii)"
➝ />

C The body of our basic page, which contains the
article, h1, img, p, em, and a elements to describe
the content’s meaning. All the content is nested in
the article.

D Headings are critical elements in defining a
page’s outline. They make a page more accessible
to users of screen readers, and search engines
use them to determine the focus of a page.

E It’s easy to add an image to a page with img.
As defined by the alt attribute, “Blue Flax (Linum
lewisii)” displays if our image doesn’t.

ptg7794906

10 Chapter 1

The paragraph is marked up with—surprise—
the p element F. Just as in printed materi-
als, a paragraph can contain a single
sentence or several sentences. If our page
needed another paragraph, you’d simply
add another p element after the first one.

There are two elements nested within our
paragraph that define the meaning of bits
of text: em and a F. These are examples of
the numerous phrasing content elements
that HTML5 provides, the majority of which
improve the semantics of paragraph text.
As mentioned, those, along with p, are
discussed in Chapter 4.

The em element means “stress emphasis.”
In the case of our page, it emphasizes
the amazement the flowers induced F.
Remember that because HTML describes
the meaning of content, em dictates seman-
tic, not visual, emphasis even though it’s
common to render em text in italics.

Finally, the basic page defines a link
to another page with the a element
(“anchor”), which is the most powerful ele-
ment in all of HTML because it makes the
Web, the Web: It links one page to another
page or resource, and links one part of a
page to another part of a page (either the
same page or a different one). In the exam-
ple, it signifies that the text “Blue Flax” is a
link to a page on Wikipedia G.

<p>I am continually amazed at
➝ the beautiful, delicate <a href="http://
➝ en.wikipedia.org/wiki/Linum_lewisii"
➝ rel="external" title="Learn more about
➝ Blue Flax">Blue Flax that somehow
➝ took hold in my garden. They are awash in
➝ color every morning, yet not a single
➝ flower remains by the afternoon. They are
➝ the very definition of ephemeral.</p>

<a href="http://en.wikipedia.org/wiki/Linum_
➝ lewisii" rel="external" title="Learn more
➝ about Blue Flax">Blue Flax

F The p element may contain other elements
that define the semantics of phrases within a
paragraph. The em and a elements are two
examples.

G This a element defines a link to the Wikipedia
page about Blue Flax. The optional rel attribute
adds to the semantics by indicating that the link
points to another site. The link works without it,
though. The optional title attribute enhances the
semantics of the a by providing information about
the linked page. It appears in the browser when a
user hovers over the link.

ptg7794906

Web Page Building Blocks 11

Pretty easy, right? Once you’ve learned
more about the HTML elements available
to you, choosing the right ones for your
content is usually a straightforward task.
Occasionally, you’ll come across a piece of
content that reasonably could be marked
up in more than one way, and that’s OK.
There isn’t always a right and wrong way,
just most of the time.

Lastly, HTML5 doesn’t try to provide an
element for every type of content imagin-
able, because the language would become
ungainly. Instead, it takes a practical, real-
world stance, defining elements that cover
the vast majority of cases.

Part of HTML’s beauty is that it’s simple
for anyone to learn the basics, build some
pages, and grow their knowledge from
there. So, although there are approximately
100 HTML elements, don’t let that number
scare you. There’s a core handful you’ll
find yourself using time and again, while
the remaining ones are reserved for less
common cases. You’ve already learned the
basics of several common elements, so
you’re well on your way.

Why Semantics Matter
Now that you know the importance of
semantic HTML and have seen it in action,
you need to know the reasons why it’s
important.

Here are some of the most important rea-
sons (this isn’t an exhaustive list), some of
which we’ve touched on already:

n	 Improved accessibility and interoper-
ability (content is available to assistive
technologies for visitors with dis-
abilities, and to browsers on desktop,
mobile, tablet, and other devices alike)

n	 Improved search engine optimization
(SEO)

n	 (Typically) lighter code and faster pages

n	 Easier code maintenance and styling

If you aren’t familiar with accessibility,
it’s the practice of making your content
available to all users, regardless of their
capabilities (see www.w3.org/standards/
webdesign/accessibility). Tim Berners-Lee,
inventor of the Web, famously said, “The
power of the Web is in its universality.
Access by everyone regardless of disability
is an essential aspect.”

www.w3.org/standards/webdesign/accessibility
www.w3.org/standards/webdesign/accessibility

ptg7794906

12 Chapter 1

Any device with a browser is capable of
displaying HTML, since it’s just text. The
means by which a user accesses content
can vary, however. For instance, sighted
users view the content, whereas a visually
impaired user may increase the page or
font size or use a screen reader, software
that reads content aloud to them (one
example of assistive technology). In some
cases, screen readers announce the type
of HTML element surrounding content in
order to give the user context for what’s to
follow. For example, the user may be told
that a list has been encountered before the
individual list items are read aloud. Similarly,
users are told when a link is encountered
so they can decide whether to follow it.

Screen reader users can navigate a page
in a variety of ways, such as jumping from
one heading to the next via a keyboard
command. This allows them to glean the
key topics of a page and listen in more
detail to the ones that interest them rather
than having to listen to the entire page
sequentially.

So you can see why good semantics
make a marked difference to users with
disabilities.

SEO—that is, your page's ranking in search
engine results—can improve, because
search engines put an emphasis on the
portions of your content that are marked
up in a particular way. For instance, the
headings tell the search engine spider the
primary topics of your page, helping the
search engine determine how to index
your page’s content.

As you progress through the book, you’ll
learn why good semantics can make your
code more efficient and easier to maintain
and style.

ptg7794906

Web Page Building Blocks 13

Markup: Elements,
Attributes, and Values
Now that you’ve seen some HTML, let’s
take a closer look at what constitutes
markup.

HTML has three principal markup compo-
nents: elements, attributes, and values.
You’ve seen examples of each in our
basic page.

Elements
Elements are like little labels that describe
the different parts of a Web page: “This is a
heading, that thing over there is a para-
graph, and that group of links is navigation.”
We discussed a few elements in the previ-
ous section. Some elements have one or
more attributes, which further describe the
purpose and content (if any) of the element.

Elements can contain text and other ele-
ments, or they can be empty. A non-empty

am continually amazed

Start tag
Content

End tag

Angle brackets Forward slash

A Here is a typical HTML element. The start
tag and end tag surround the text the element
describes. In this case, the word “amazed”
is emphasized, thanks to the em element. It’s
customary to type your element tags in lowercase.

element consists of a start tag (the
element’s name and attributes, if any,
enclosed in less-than and greater-than
signs), the content, and an end tag (a
forward slash followed by the element’s
name, again enclosed in less-than and
greater-than signs) A.

An empty element (also called a void ele-
ment) looks like a combination start and
end tag, with an initial less-than sign, the
element’s name followed by any attributes
it may have, an optional space, an optional
forward slash, and the final greater-than
sign, which is required B.

The space and forward slash before the
end of an empty element are optional in
HTML5. It’s probably fair to say that those
of us who previously coded in XHTML,
which requires the forward slash to close
an empty element, tend to use it in HTML5
too, though certainly others have dropped it.
I include it in my code, but if you choose
to omit it from yours, the page will behave

A space and forward slash

B Empty elements, like img shown here, do not surround any text content (the alt attribute text is part of the
element, not surrounded by it). They have a single tag which serves both to open and close the element. The
space and forward slash at the end are optional in HTML5, but it’s common to include them. However, the >
that completes the element is required.

ptg7794906

14 Chapter 1

exactly the same. Whichever way you go, I
recommend doing it consistently.

It’s customary to type your element names
in all lowercase, although HTML5 isn’t
picky here either, allowing uppercase
letters instead. However, it’s rare to find
someone nowadays who codes in upper-
case, so unless the rebel in you just can’t
resist, I don’t recommend it. It’s looked
upon as a dated practice.

Attributes and Values
Attributes contain information about the
content in the document, as opposed to
being content itself (C and D). In HTML5,
an attribute’s value may optionally be

enclosed in quotation marks, but it’s cus-
tomary to include them, so I recommend
you always do so. And just as with element
names, I recommend you type your attri-
bute names in lowercase.

Although you’ll find details about accept-
able values for most attributes in this book,
let me give you an idea of the kinds of
values you’ll run into as you progress.

Some attributes can accept any value,
others are more limited. Perhaps the most
common are those that accept enumerated
or predefined values. In other words, you
must select a value from a standard list of
choices E. Be sure to write enumerated
values in all lowercase letters.

The value of the for attribute

C Here is a label element (which associates a text label with a form field) with a simple attribute-value pair.
Attributes are always located inside an element’s start tag. It’s customary to enclose them in quotation marks.

<label for="email">Email Address</label>

for is an attribute of label

href is an attribute of a rel is also an attribute of a

title is an attribute of a
Value for title

D Some elements, like a shown here, can take one or more attributes, each with its own value. The order is
not important. Separate each attribute-value pair from the next with a space.

<a href="http://en.wikipedia.org/wiki/Linum_lewisii" rel="external"
➝ title="Learn more about Blue Flax">Blue Flax

Value for href Value for rel

Predefined value

E Some attributes only accept specific values. For example, the media attribute in the link element can
be set to all, screen, or print, among others, but you can’t just make up a value for it like you can with the
title attribute.

ptg7794906

Web Page Building Blocks 15

Many attributes require a number for their
value, particularly those describing size
and length. A numeric value never includes
units, just the number. Where units are
applicable, as in the width and height of an
image or video, they are understood to be
pixels.

Some attributes, like href and src, refer-
ence other files and thus must contain
values in the form of a URL, or Uniform
Resource Locator, a file’s unique address
on the Web. You’ll learn more about URLs
in the “URLs” section of this chapter.

Parents and Children
If one element contains another, it is
considered to be the parent of the
enclosed, or child, element. Any elements
contained in the child element are con-
sidered descendants of the outer, parent

element F. You can actually create a
family tree of a Web page that shows the
hierarchical relationships between each
element on the page and that uniquely
identifies each element.

This underlying, family tree-like structure
is a key feature of HTML code. It facilitates
both styling elements (which you’ll begin
learning about in Chapter 7) and applying
JavaScript behavior to them.

It’s important to note that when elements
contain other elements, each element must
be properly nested, that is, fully contained
within its parent. Whenever you use an
end tag, it should correspond to the last
unclosed start tag. In other words, first
open element 1, then open element 2,
then close element 2, and then close
element 1 G.

F The article element is parent to the h1, img, and p elements. Conversely, the h1, img, and p elements
are children (and descendants) of the article. The p element is parent to both the em and a elements. The
em and a are children of the p and also descendants (but not children) of the article. In turn, article is their
ancestor.

G Elements must be properly nested. If you open p and then em, you must close em before you close p.

<article>

 <h1>The Ephemeral Blue Flax</h1>

 <p>... continually amazed ... delicate <a ...>Blue Flax ...</p>

</article>

<p>... continually amazed ...</p>

<p>... continually amazed ...</p>

Incorrect (the sets of tags cross over each other)

Correct (no overlapping lines)

ptg7794906

16 Chapter 1

A Web Page’s
Text Content
The text contained within elements is per-
haps a Web page’s most basic ingredient. If
you’ve ever used a word processor, you’ve
typed some text. Text in an HTML page,
however, has some important differences.

First, when a browser renders HTML it
collapses extra spaces or tabs into a single
space and either converts returns and line
feeds into a single space or ignores them
altogether (A and B).

Next, HTML used to be restricted to ASCII
characters—basically the letters of the
English language, numerals, and a few
of the most common symbols. Accented
characters (common to many languages
of Western Europe) and many everyday
symbols had to be created with special
character references like é (for é) or
© (for ©). See a full list at www.eliza
bethcastro.com/html/extras/entities.html.

Unicode mitigates a lot of issues with
special characters. It’s standard practice
to encode pages in UTF-8, as in the basic
page C, and save HTML files with the same
encoding (see “Saving Your Web Page” in
Chapter 2). I recommend you do the same.

Because Unicode is a superset of
ASCII—it’s everything ASCII is, and a lot
more—Unicode-encoded documents are
compatible with existing browsers and edi-
tors, except particularly old ones. Brows-
ers that don’t understand Unicode will
interpret the ASCII portion of the document
properly, while browsers that do under-
stand Unicode will display the non-ASCII
portion as well. Even so, it’s still common to
use character references at times, such as
for the copyright symbol since it’s easy to
both remember and type © A.

<p>I am continually amazed at the
➝ beautiful, delicate Blue Flax that
➝ somehow took hold in my garden.

They are awash in color every
➝ morning, yet not a single flower
➝ remains by the afternoon.

They are the very definition of
➝ ephemeral.</p>
<p>© Blue Flax Society.</p>

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8" />
 <title>Blue Flax (Linum lewisii)</title>
</head>
<body>
...
</body>
</html>

A A page’s text content (highlighted) is mostly
anything besides the markup. In this example, note
that each sentence is separated by at least one
carriage return, and some words are separated
by several spaces (just to emphasize the point
about collapsing returns and spaces). Also, it
includes a special character reference (©) for
the copyright symbol to ensure that it is properly
displayed no matter the encoding in which you
save this document.

C Specify your document’s character encoding
directly after the head start tag. The charset
attribute sets the encoding type.

B Note that when you view the document with a
browser, the extra returns and spaces are ignored
and the character reference is replaced by the
corresponding symbol (©).

www.elizabethcastro.com/html/extras/entities.html
www.elizabethcastro.com/html/extras/entities.html

ptg7794906

Web Page Building Blocks 17

Links, Images, and
Other Non-Text
Content
Of course, part of what makes the Web
so vibrant are the links from one page to
another, and the images, videos, music,
animations, and more. Instead of actually
enclosing the external files, such as videos,
in the HTML file, these files are saved inde-
pendently and are simply referenced from
within the page A. Since the reference
is nothing more than text, the HTML file
remains nearly universally accessible.

Browsers can handle links and images
(except in text-only browsers) without skip-
ping a beat B. However, they can’t neces-
sarily handle every other kind of file. If you
reference a file that your visitor’s browser
doesn’t understand, the browser will often
try to find a plugin or helper application—
some appropriate program on the visitor’s
computer—that is capable of opening that
kind of file.

You can also give browsers extra informa-
tion about how to render content with a
plugin if it requires it, or how to download
the plugin if the visitor doesn’t already
have it on their computer.

...
<article>
 <h1>The Ephemeral Blue Flax</h1>

 <img src="blueflax.jpg" width="300"
➝ height="175" alt="Blue Flax (Linum
➝ lewisii)" />

 <p>I am continually amazed at
➝ the beautiful, delicate <a href=
➝ "http://en.wikipedia.org/wiki/Linum_
➝ lewisii" rel="external" title="Learn
➝ more about the Blue Flax">Blue Flax
➝ that somehow took hold in my
➝ garden. They are awash in color every
➝ morning, yet not a single flower
➝ remains by the afternoon. They are the
➝ very definition of ephemeral.</p>

</article>
...

A In our basic HTML document, there is a
reference to an image file called blueflax.jpg,
which the browser will request, load, and display
when it loads the rest of the page. The page also
includes a link to another page about Blue Flax.

B Images and other non-text content are
referenced from a Web page, and the browser
displays them together with the text.

ptg7794906

18 Chapter 1

All this business about downloading and
installing plugins disrupts a user’s experi-
ence on your site, assuming they stick
around. Plugins can also introduce per-
formance problems because they aren’t a
native part of the browser.

Flash, for instance, has been the most
widespread plugin for years. No doubt
you’ve watched an online video played
through Flash at some point and experi-
enced your computer slow down or the
occasional browser crash (or both).

HTML5 attempts to mitigate many of these
issues by introducing native media play-
back in the browser via the audio and
video elements. Unfortunately, there’s
been debate among the browser vendors
about which media formats to support,
so you can’t always do away with plugins
altogether yet. But it’s a start.

You’ll learn more about images in
Chapter 5, and go over plugins, HTML5’s
media elements, and more in Chapter 17.

ptg7794906

Web Page Building Blocks 19

File Names
Like any other text document, a Web page
has a file name that identifies itself to
you, your visitors, and your visitors’ Web
browsers. There are a few tips to keep in
mind when assigning file names to your
Web pages that will help you organize your
files, make it easier for your visitors to find
and access your pages, ensure that their
browsers view the pages correctly, and
improve SEO (A and B).

Use Lowercase File Names
Since the file name you choose for your
Web page determines what your visitors
will have to type in order to get to your
page, you can save your visitors from inad-
vertent typos (and headaches) by using
only lowercase letters in your file names.
It’s also a big help when you create links
between your pages yourself. If all your file
names have only small letters, it’s just one
less thing you’ll have to worry about.

Separate Words with a Dash
Never include spaces between words in
your file names. Instead, use a dash, for
example, company-history.html and
my-favorite-movies.html. You’ll come
across the occasional site that uses under-
scores (“_”) instead, but they aren’t recom-
mended, because dashes are preferred by
search engines.

Use the Proper Extension
The principal way a browser knows that it
should read a text document as a Web page
is by looking at its extension. Although .htm
also works, .html is customary, so I recom-
mend you use that as your extension. If the
page has some other extension, such as
.txt, the browser will treat it as text and
show all your nice code to the visitor.

Be aware that neither Mac OS nor Win-
dows always reveals a document’s real exten-
sion. Change your folder options, if necessary,
so you can see extensions.

A Remember to use all lowercase letters for your file names, separate words with a dash, and add the .html
extension. Mixing upper- and lowercase letters makes it harder for your visitors to type the proper address
and find your page.

B Use all lowercase letters and dashes for your directories and folders as well. The key is consistency. If
you don’t use uppercase letters, your visitors (and you) don’t have to waste time wondering “Now, was that a
capital B or a small one?”

http://www.yoursite.com/notable-architects/20th-century/buckminster-fuller.html

http://www.yoursite.com/NotableArchitects/20th_CENTURY/Buckminster_Fuller.html

Correct approach

Incorrect approach

buckminster-fuller.html Buckminster_Fuller.html

File name, in all
lowercase letters

File names with capital letters are
a pain to type and to communicateExtension

Separate each word with a dash Underscores are not as good for
search engine optimization as dashes

ptg7794906

20 Chapter 1

URLs
Uniform Resource Locator, or URL, is a
fancy name for address. It contains infor-
mation about where a file is and what a
browser should do with it. Each file on the
Internet has a unique URL.

The first part of the URL is called the
scheme. It tells the browser how to deal
with the file that it is about to open. The
most common scheme you will see is
HTTP, or Hypertext Transfer Protocol. It is
used to access Web pages A.

The second part of the URL is the name
of the server where the file is located, fol-
lowed by the path that leads to the file, and
the file’s name itself. Sometimes, a URL
omits a file name and ends with a path,
which may or may not include a trailing for-
ward slash B. In this case, the URL refers
to the default file in the last directory in the
path, typically called index.html.

Other common schemes are https, for
secure Web pages; ftp (File Transfer Pro-
tocol), for downloading files C; mailto, for
sending email D; and file, for accessing
files on a local hard disk or local file sharing
networks (you won’t have occasion to use
the file scheme very often, if at all) E.

A scheme is generally followed by a colon
and two forward slashes. mailto and news
are exceptions; these take only a colon.

Notice that the file scheme is followed by
a colon and three slashes. That’s because
the host, which in other schemes goes
between the second and third slashes, is
assumed to be the local computer. Always
type schemes in lowercase letters.

Of these schemes, you will use http and
mailto most frequently. The others are for
specialized cases.

"http://www.site.com/tofu/index.html"

"file:///c|/path/home.htm"

"ftp://ftp.site.com/pub/proposal.pdf"

"mailto:somename@somedomain.com"

"http://www.site.com/tofu/"

Scheme

Scheme

Scheme

Scheme

Server name

Drive letter

Vertical bar

Server name

Email address

Path

Path

File name

Path and file name

File name

Trailing forward slash

A Your basic URL contains a scheme, server
name, path, and file name.

E To reference a file on a local Windows
machine, use the file scheme. For Macintosh, use
file:///Harddisk/path/filename. No vertical bar
is required. (This sometimes works for Windows
as well.)

C When the user clicks this URL, the browser will
begin an FTP transfer of the file proposal.pdf.

D A URL for an email address includes the
mailto scheme followed by a colon but no
forward slashes, and then the email address itself.

B A URL with a trailing forward slash and no file
name points to the default file in the last directory
named (in this case, the tofu directory). The most
common default file name is index.html. So, this
URL and the one from the previous example point
to the same page.

ptg7794906

Web Page Building Blocks 21

Absolute URLs
URLs can be either absolute or relative. An
absolute URL shows the entire path to the
file, including the scheme, the server name,
the complete path, and the file name
itself F. An absolute URL is analogous to
a complete street address, including name,
street and number, city, state, zip code, and
country. No matter where a letter is sent
from, the post office will be able to find the
recipient. In terms of URLs, this means that
the location of the absolute URL itself has
no bearing on the location of the actual file
referenced—whether it is in a Web page on
your server or another server, an absolute
URL to a particular file will look exactly the
same.

When you’re referencing a file from
someone else’s server, you’ll always use
an absolute URL. You’ll also need to use
absolute URLs for FTP sites or, generally,
any kind of URL that doesn’t use an HTTP
protocol.

Table 1.1 describes how you would access
various files from you-are-here.html—both
those on the same site (site.com) as the
page and on another site (remote.com)—as
a way of illustrating the difference between
relative and absolute URLs.

F The document that contains the URLs
(you-are-here.html in this case) is the reference
point for relative URLs. In other words, relative
URLs are relative to that file’s location on the
server. Absolute URLs will work no matter where
they are located, because they always contain the
full URL to a resource.

www.site.com

about

img

www.remote.com

press

sign-up

news.html

index.html

image.png

info

data.html

index.html

you-are-here.html

TABLE 1.1 Absolute URLs vs. Relative URLs

File name
Absolute URL
(can be used anywhere)

Relative URL
(only works in you-are-here.html)

index.html http://www.site.com/about/index.html index.html

data.html http://www.site.com/about/info/data.html /info/data.html

image.png http://www.site.com/img/image.png ../img/image.png

news.html http://www.remote.com/press/news.html (none: use absolute)

index.html http://www.remote.com/sign-up/index.html (none: use absolute)

www.site.com
www.remote.com
http://www.site.com/about/index.html
http://www.site.com/about/info/data.html
http://www.site.com/img/image.png
http://www.remote.com/press/news.html
http://www.remote.com/sign-up/index.html

ptg7794906

22 Chapter 1

Relative URLs
To give you directions to my neighbor’s
house, instead of giving her complete
address I might just say, “it’s three doors
down on the right.” This is a relative
address—where it points to depends on
where the information originates. With the
same information in a different city, you’d
never find my neighbor.

In the same way, a relative URL describes
the location of the desired file with refer-
ence to the location of the file that contains
the URL reference itself. So, you might
have the URL say something like “link to
the xyz page that’s in the same directory as
this page.”

The relative URL for a file that is in the
same directory as the current page (that is,
the one containing the URL in question) is
simply the file name and extension G. You
create the URL for a file in a subdirectory
of the current directory by typing the name
of the subdirectory followed by a forward
slash and then the name and extension of
the desired file H.

To reference a file in a directory at a higher
level of the file hierarchy, use two periods
and a forward slash I. You can combine
and repeat the two periods and forward
slash to reference any file on the same
server or drive as the current file.

"index.html"

"info/data.html"

"../img/image.png"

Inside the current folder,
there’s a file called “index.html”…

Inside the current folder,
there’s a folder called “info”…

The folder that contains the current folder…

G The relative URL to link to a file in the same
folder (see F). Only the file’s name and extension
are required in the URL, rather than preceding
those with http://www.site.com/about/ (the
folder in which both files live).

H To reference a file (data.html, in this example)
that is within a folder inside the current folder
(see F), add the sub-folder’s name and a forward
slash in front of the file name.

I This file, as you can see in F, is in a folder
(img) that sits alongside the current folder (about)
in the site’s root directory. In that case, you use
two periods and a forward slash to go up a level,
and then note the subdirectory, followed by a
forward slash, followed by the file name. (In normal
practice, you’d choose a more descriptive image
file name than image.png, which is deliberately
generic for the example.)

…that contains…

…that contains…

…contains… …a folder called “img”

…a file called “data.html.”

…a file called “image.png”…

http://www.site.com/about/

ptg7794906

Web Page Building Blocks 23

Alternatively, if your files are on a Web
server, you can avoid cumbersome file
paths such as ../../img/family/vacation
.jpg by first jumping straight to your site’s
root and then drilling down from there to
the targeted file. A single forward slash at
the beginning achieves this, so the root
relative URL in this case would be /img/
family/vacation.jpg (assuming the img
folder sits in the site’s root folder, which
is customary). Again, this only works on
a Web server, like at the hosting provider
that serves your site or one you’re running
locally on your machine (Apache is the
most popular choice for that).

If you aren’t developing your site locally
on a server, then generally you’ll want to
use relative URLs (except when pointing to
files on someone else’s server, of course).
They’ll make it easy to move your pages
from a local system to a server. As long as
the relative position of each file remains
constant, you won’t have to change any of
the paths, so the links will work correctly.

ptg7794906

24 Chapter 1

Key Takeaways
The basics of HTML and some key best
practices provide the foundation for build-
ing effective Web sites. Let’s revisit the key
takeaways:

n	 A Web page is primarily made up of
three components: text content, refer-
ences to other files, and markup.

n	 HTML markup is composed of ele-
ments, attributes, and values.

n	 It’s customary to write your HTML in all
lowercase (DOCTYPE is an exception),
surround your attribute values with
quotes, and close empty elements with
a space and a forward slash (/).

n	 Always begin your HTML documents
with the DOCTYPE declaration:

<!DOCTYPE html>

n	 A page’s content goes in the body ele-
ment. Instructions primarily intended
for the browser and search engines are
before that, mostly in the head.

n	 Mark up your content with semantic
HTML and without regard for how it
should appear in a browser.

n	 Semantic HTML improves accessibility
and can make your site more efficient,
and easier to maintain and style.

n	 CSS controls the presentation of HTML
content.

n	 Each browser’s own style sheet dictates
the default presentation of HTML. You
can overwrite these rules with your
own CSS.

n	 Create file and folder names in all low-
ercase, and separate words with a dash
instead of a space or underscore.

Next you’ll learn about how to work with
Web page files.

